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What are GANs

 Definition

 Generative Adversarial Networks (GANs) are a class of machine 
learning models designed to generate new data samples that 
resemble a given dataset.

 Introduced by Ian Goodfellow and his colleagues in 2014.

 GANs are part of the broader field of generative modeling.
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Generated bedrooms. Source: “Unsupervised Representation Learning with Deep 
Convolutional Generative Adversarial Networks” https://arxiv.org/abs/1511.06434v2
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Original CIFAR-10 vs. Generated CIFAR-10 samples 
Source: “Improved Techniques for Training GANs” https://arxiv.org/abs/1606.03498
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How do GANs Work?

• GAN Architecture:

• Generator (G): G(z) where z is random noise.

• Discriminator(D): D(x) where x is real or generated data.

• Objective: 

• Minimize �� and �� where ��  is the discriminator loss and 
��   is the generator loss.
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Generative Adversarial Network (GAN)

Source: Zhifei Zhang , University of Tennessee, Knoxville 
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Generative Adversarial Network (GAN)

Source: DigitalSreeni Youtube Channel
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Generative Adversarial Network (GAN)

Binary Classifier: 
Conv, Leaky ReLU, 
FC, Sigmoid

New components:
Transposed convolution,
Batch Normalization

https://github.com/PramodShenoy/GANerations
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Components of a GANs

 Generator:

 Input: Random noise (z).

 Output: Generates synthetic data (G(z)).

 Discriminator:

 Input: Real or generated data (x).

 Output: Classifies input as real or fake (D(x)).
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Generating fake figures

Source of images: https://zhuanlan.zhihu.com/p/24767059
From Dr. HY Lee’s notes.

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

You can use the following to start a project (but this is in Chinese):
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GAN – generating 2nd element figuresb

100 rounds

This is fast, I think you can use your CPU
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GAN – generating 2nd element figures

1000 rounds
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GAN – generating 2nd element figures

2000 rounds
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GAN – generating 2nd element figures

5000 rounds
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GAN – generating 2nd element figures

10,000 rounds
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GAN – generating 2nd element figures

20,000 rounds
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GAN – generating 2nd element figures

50,000 rounds
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Next few images from Goodfellow lecture

Traditional mean-squared
Error, averaged, blurry
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Last 2 are by deep learning approaches.
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Similar to word embedding (DCGAN paper)
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Training GANs
 Iterative Process:

 Generator generates samples G(z)).

 Discriminator evaluates and provides feedback.

 Adjustments made to both generator and discriminator.

 Repeat until convergence.

 Adversarial Loss Function:
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Logistic
Regression

Cost function
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Logistic regression cost function

If y = 1
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Logistic regression cost function

If y = 0
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Logistic regression consolidated cost function

If y = 1

10 10

Cost(hθ(x) , y) = -y log(hθ(x) )  – ( (1-y) log(1- hθ(x)) 

If y = 0
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GAN consolidated cost function

If �~�����
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GAN Applications

 Image Generation:

 Visual: Comparison between real and generated images.

 Data Augmentation:

 Visual: Original vs. augmented dataset.

 Image-to-Image Translation:

 Visual: Satellite image to map conversion.

 Super Resolution:

 Visual: Low resolution vs. high resolution image.
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GAN Challenges and Future Directions

 Training Stability:

 Visual: Illustration of mode collapse.

 Evaluation Metrics:

 Visual: Difficulty in evaluating generated samples.

 Ethical Considerations:

 Visual: Potential biases in generated data.

 Future Directions:

 Visual: Concepts for improved GAN architectures.
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Training Procedure

 Train both models simultaneously via stochastic gradient 
descent using minibatches consisting of

 some generated samples

 some real-world samples

 Training of D is straightforward

 Error for G comes via back propagation through D

 Two ways to think about training

 (1) freeze D weights and propagate �� through D to determine ���/��

 (2) Compute ���/�� and then ��� ��⁄ = −���/��

 D can be trained without altering G, and vice versa

 May want multiple training epochs of just D so it can stay ahead

 May want multiple training epochs of just G because it has a 
harder task

Discriminative
Model

real or fake?

Generative
Model

noise (�)

Real world
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Training Procedure
 for each training iteration do

 for k steps do

Sample m noise samples {z1, …, zm} and transform with Generator

Sample m real samples {x1, …, xm} from real data

Update the Discriminator by ascending the gradient.
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 end for

 Sample m noise samples {z1, …, zm} and transform with Generator

 Update the Generator by descending the gradient:
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Understand the Math and Theory of GANs in ~ 10 mins 
https://www.youtube.com/watch?v=J1aG12dLo4I
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The Discriminator Has a Straightforward Task

 D has learned when 
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The Math Behind Generative Adversarial Networks Clearly Explained!
https://www.youtube.com/watch?v=Gib_kiXgnvA
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Coding GANs

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Importing Libraries

import os

import numpy as np

import matplotlib.pyplot as plt

from tqdm import tqdm

from numpy import zeros

from numpy import ones

from numpy.random import randn

from numpy.random import randint

from keras.datasets.cifar10 import load_data

from keras.optimizers import Adam

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Reshape

from keras.layers import Flatten

from keras.layers import Conv2D

from keras.layers import Conv2DTranspose, BatchNormalization

from keras.layers import LeakyReLU, ReLU

from keras.layers import Dropout

from keras.layers import Embedding

from keras.layers import Concatenate

import matplotlib.pyplot as plt

https://www.datacamp.com/tutorial/generative-adversarial-networks
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Copy/Split the Dataset into Train & Test Folders
from google.colab import drive

    drive.mount('/content/drive’)

from sklearn.model_selection import train_test_split

import os

import shutil

dataset_folder = '/content/drive/MyDrive/tea_sickness_subset'

# Get the list of image filenames in the dataset folder
image_files = [os.path.join(dataset_folder, file)
for file in os.listdir(dataset_folder)
if file.endswith('.jpg') or file.endswith('.png')]

#Define the ratio for splitting the dataset into training and 

testing sets

test_size = 0.2

# Split the dataset into training and testing sets

train_files, test_files = train_test_split(image_files, 

test_size=test_size, random_state=42)

# Print the number of images in each set

print("Number of images in training set:", len(train_files))

print("Number of images in testing set:", len(test_files))

https://www.datacamp.com/tutorial/generative-adversarial-networks

# Optionally, you can move the files to separate training and 

testing folders

train_folder = '/content/train_dataset'

test_folder = '/content/test_dataset’

# Create the training and testing folders if they don't exist

if not os.path.exists(train_folder):

    os.makedirs(train_folder)

if not os.path.exists(test_folder):

    os.makedirs(test_folder)

# Move training images to the train folder

for file in train_files:

    filename = os.path.basename(file)

    dest_path = os.path.join(train_folder, filename)

    shutil.copyfile(file, dest_path)

# Move testing images to the test folder

for file in test_files:

    filename = os.path.basename(file)

    dest_path = os.path.join(test_folder, filename)

    shutil.copyfile(file, dest_path)

print("Dataset split and saved into training and testing 

folders.")
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Load the Split Dataset into x_train & y_train np Arrays
from PIL import Image

import os

import numpy as np

# Define the paths to the training and testing folders

train_folder = '/content/train_dataset'

test_folder = '/content/test_dataset'

# Initialize lists to store the image data

x_train = []

x_test = []

# Resize function

def resize_image(img, size=(512, 512)):

    return img.resize(size)

https://www.datacamp.com/tutorial/generative-adversarial-networks

# Read images from the training folder

for filename in os.listdir(train_folder):

    img_path = os.path.join(train_folder, filename)

    img = Image.open(img_path)

    img_resized = resize_image(img)  # Resize the image to 256x256

    img_data = np.array(img_resized)  # Convert image to numpy array

    x_train.append(img_data)

# Read images from the testing folder

for filename in os.listdir(test_folder):

    img_path = os.path.join(test_folder, filename)

    img = Image.open(img_path)

    img_resized = resize_image(img)  # Resize the image to 256x256

    img_data = np.array(img_resized)  # Convert image to numpy array

    x_test.append(img_data)

# Convert lists to numpy arrays

x_train = np.array(x_train)

x_test = np.array(x_test)

# Print the shapes of the arrays

print("Shape of x_train:", x_train.shape)

print("Shape of x_test:", x_test.shape)
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Convert Data into Float and Normalize
x_train = np.array(x_train)

x_test = np.array(x_test)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train,x_test=x_train/255.0,x_test/255.0

print(x_train.shape,x_test.shape)

img_width = x_train.shape[1]

img_height = x_train.shape[2]

num_channels = 3

x_train = x_train.reshape(x_train.shape[0], img_height, img_width, num_channels)

x_test = x_test.reshape(x_test.shape[0], img_height, img_width, num_channels)

# Print the shapes of the arrays

print("Shape of x_train:", x_train.shape)

print("Shape of x_test:", x_test.shape)

input_shape = (img_height, img_width, num_channels)

plt.figure(1)

plt.subplot(221)

plt.imshow(x_train[300][:,:,0])

plt.subplot(222)

plt.imshow(x_test[10][:,:,0])

https://www.datacamp.com/tutorial/generative-adversarial-networks
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Us the Adam Optimizer

# You will use the Adam optimizer

def get_optimizer():

return Adam(lr=0.0002, beta_1=0.5)

https://www.datacamp.com/tutorial/generative-adversarial-networks
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Build up the Generator
def define_generator(latent_dim):
    # Image generator input
    in_lat = Input(shape=(latent_dim,))  # Input of dimension, say 128

    # Foundation for 32x32 image
    n_nodes = 32 * 32 * 256
    gen = Dense(n_nodes)(in_lat)  # shape = 262,144
    gen = Reshape((32, 32, 256))(gen)  # Shape=32x32x256
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Upsample to 64x64x128
    gen = Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same')(gen)
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Upsample to 128x128x64
    gen = Conv2DTranspose(32, (4, 4), strides=(2, 2), padding='same')(gen)
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Upsample to 256x256x32
    gen = Conv2DTranspose(16, (4, 4), strides=(2, 2), padding='same')(gen)
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Output layer  256x256x3
    out_layer = Conv2D(3, (8, 8), activation='tanh', padding='same')(gen)

    # Define model
    model = Model(in_lat, out_layer)
    return model  # Model not compiled as it is not directly trained like the discriminator.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Create a functional model for the generator, with in_lat
as model input and last layer output  as model output

The input the first layer is a variable called in_lat, of 
dimension = latent_dim (e.g., 128)

The final out_layer generates an 
image of size = 256x256x3

• The dense layer is followed by (03)
unsampling blocks featuring 2D 
transpose convolution layers.

• Each Conv2DTranspose layer is 
followed by a BacthNormalizaton and 
ReLU activation function
•Image is reshaped to 64x64x128, 
128x128x64 and 256x256x32 sizes, 
respectively by these blocks

• This generator network starts with (01) block  
featuring dense layer, followed by Reshape(32, 32, 
256), BacthNormalizaton and ReLU activation function
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Build up the Generator
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Build up the Discriminator
def define_discriminator(image_shape = (256,256,3)):
    # Input layer for real or generated image
    in_image = Input(shape=image_shape)

    # Downsample to 128x128x64
    d = Conv2D(64, (4, 4), strides=(2, 2), padding='same')(in_image)
    d = LeakyReLU(alpha=0.2)(d)
    d = Dropout(0.25)(d)

    # Downsample to 64x64x128
    d = Conv2D(128, (4, 4), strides=(2, 2), padding='same')(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Dropout(0.25)(d)

    # Downsample to 32x32x256
    d = Conv2D(256, (4, 4), strides=(2, 2), padding='same')(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Dropout(0.25)(d)

    # Flatten and output a single classification value
    d = Flatten()(d)
    out_layer = Dense(1, activation='sigmoid')(d)

    # Define model
    model = Model(in_image, out_layer)
    opt = Adam(lr=0.0002, beta_1=0.5)
    model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
    return model

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

The input dimension of the first layer is a is 
256x256x3, which is the same as the output 
dimension of the generator's last layer.

• The descriminator network features 
three (03) downsampling blocks featuring 
2D convolution layers.

• Each Conv2D layer is followed by 
LeakyReLU activation function

• Image is reshaped to 128x128x64, 
64x64x128, and 32x32x32 sizes, 
respectively by these blocks

• This discreminator network ends with a dense 
layer, which is given the flattened output of 
lass convolution block as its input

• The last dense layer has a sigmoid activation 
function.

• Create a functional model for the descriminator, 
with in_image as model input and last layer 
output  as model output

• The descriminator is compiled with binary cross-
entropy loss and the optimizer passed as an 
argument.
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Build up the Discrimnator
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Building the Generative Adversarial Network
def define_gan(g_model, d_model):
  d_model.trainable = False  #Discriminator is trained separately.
  # So set to not trainable.
  # connect generator and discriminator...
  # Get noise and label inputs from generator model
  gen_noise = g_model.input

  # Get image output from the generator model
  gen_output = g_model.output  #256x256x3

  # generator image output is inputs to discriminator
  gan_output = d_model(gen_output)

  # Define a gan model as taking in noise, and outputting a classification
  model = Model(gen_noise, gan_output)

  # Compile model
  opt = Adam(lr=0.0002, beta_1=0.5)
  model.compile(loss='binary_crossentropy', optimizer=opt)
  return model

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Aa pre-trained 
discriminator model

A pre-trained 
generator model

Get noise and label inputs from 
generator model

Get image output 
(256x256x3)from the generator 

model

Define a gan model as taking in noise, 
and outputting a classification

GAN is compiled with binary cross-entropy loss 
and the optimizer passed as an argument.

generator image output is inputs 
to discriminator
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Generate Real Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_real_samples(dataset, n_samples):

# split into images and labels

images, labels = dataset

# choose random instances

ix = randint(0, images.shape[0], n_samples)

# select images and labels

X, labels = images[ix], labels[ix]

# generate class labels and assign to y (don't confuse this with the above labels that   

# correspond to cifar labels)

y = ones((n_samples, 1)) #Label=1 indicating they are real

return [X, labels], y
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Generate points in latent space as input for the generator

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_latent_points(latent_dim, n_samples, n_classes=10):

# generate points in the latent space

x_input = randn(latent_dim * n_samples)

# reshape into a batch of inputs for the network

z_input = x_input.reshape(n_samples, latent_dim)

# generate labels

labels = randint(0, n_classes, n_samples)

return [z_input, labels]
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Generate Fake Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_fake_samples(generator, latent_dim, n_samples):

# generate points in latent space

z_input, labels_input = generate_latent_points(latent_dim, n_samples)

# predict outputs

images = generator.predict([z_input, labels_input])

# create class labels

y = zeros((n_samples, 1)) #Label=0 indicating they are fake

return [images, labels_input], y
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Training Procedure
 for each training iteration do

 for k steps do

Sample m real samples {x1, …, xm} from real data

Sample m noise samples {z1, …, zm} and transform with Generator

Update the Discriminator by ascending the gradient.

▽ �� 

�

�
 ∑ �� � �(�) + �� � − � � �(�)�

���

 end for

 Sample m noise samples {z1, …, zm} and transform with Generator

 Update the Generator by descending the gradient:

▽ �� 

�

�
 ∑ �� � �(�) + �� � − � � �(�)�

���

▽ �� 

�

�
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Understand the Math and Theory of GANs in ~ 10 mins 
https://www.youtube.com/watch?v=J1aG12dLo4I
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Training the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Load dataset

Split the training data 
into batches

Builds the GAN network using the  
define_discriminator() 
define_generator,  and 
define_gan functions.

Training GAN: For Each epoch, batch perform following

1. Train discriminator on real samples

2. Train discriminator on fake samples

3. Train the generator network on the input noise
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Training the Generative Adversarial Network
# size of the latent space

latent_dim = 128

# create the discriminator

d_model = define_discriminator()

# create the generator

g_model = define_generator(latent_dim)

# create the gan model

gan_model = define_gan(g_model, d_model)

# load image data

dataset = load_real_samples()

# train the GAN mode model

train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=10, n_batch=32)

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Create GAN

Create the generator model

Create the discriminator model

Load Image Data

Train the GAN Model



Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, 
n_batch=128, subset_size=None):

if subset_size is not None:

dataset_subset=(dataset[0][:subset_size], dataset[1][:subset_size])

else:

dataset_subset = dataset

bat_per_epo = int(dataset_subset[0].shape[0] / n_batch)

half_batch = int(n_batch / 2)

 # The discriminator model is updated for a half batch of real samples

 # and a half batch of fake samples, combined a single batch.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, n_batch=128, 
subset_size=None):

---
for i in range(n_epochs):
    for j in range(batch_per_epoch):
        # Train discriminator on real samples
        X_real, y_real = generate_real_samples(dataset_subset, half_batch)
        d_loss_real, _ = d_model.train_on_batch(X_real, y_real)

        # Train discriminator on fake samples
        X_fake,y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
        d_loss_fake, _ = d_model.train_on_batch(X_fake, y_fake)

        # Train generator
        z_input = generate_latent_points(latent_dim, n_batch)
        y_gan = np.ones((n_batch, 1))
        g_loss = gan_model.train_on_batch(z_input, y_gan)

        # Print losses on this batch
        print('Epoch#%d,Batch#%d/%d,d_loss_real=%.3f,d_loss_fake=%.3f,g_loss = %.3f'%
            (i+1, j+1, batch_per_epoch, d_loss_real, d_loss_fake, g_loss))

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

1. Train discriminator on real samples

2. Train discriminator on fake samples

3. Train the generator network on 

z_input , which is the input noise

Print losses in this batch

• Train the discriminator on real and fake images, separately (half batch each)

• Research showed that separate training is more effective.
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Load the trained model and generate a few images

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

google_drive_path = '/content/drive/My Drive/Colab Notebooks/DeepFake/'
model = load_model(google_drive_path + 'GAN_Tea_Disease.h5')
# generate multiple images
latent_points = generate_latent_points(128, 128)
# specify labels - generate 10 sets of labels each gping from 0 to 9
# generate images
X  = model.predict([latent_points])
# scale from [-1,1] to [0,1]
X = (X + 1) / 2.0
X = (X*255).astype(np.uint8)
# plot the result (10 sets of images, all images in a column should be of same
# class in the plot)
# Plot generated images
def show_plot(examples, n):
  for i in range(n * n):
    plt.subplot(n, n, 1 + i)
    plt.axis('off')
    plt.imshow(examples[i, :, :, :])
  plt.show()
show_plot(X, 10)
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Conditional GANs

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Generative Adversarial Network (GAN)

Source: DigitalSreeni Youtube Channel
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Coding Conditional GANs

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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def define_generator(latent_dim, n_classes=10):

in_label = Input(shape=(1,)) #Input of dimension 1

li = Embedding(n_classes, 50)(in_label) #Shape 1 x 50

n_nodes = 32 * 32 #Linear multiplication, to match the dimensions for       

concatenation later in this step.

li = Dense(n_nodes)(li)    # Dense layer of size  1 x 64

li = Reshape((32, 32, 1))(li) # (32x32x1) reshape to additional channel

in_lat = Input(shape=(latent_dim,)) # image generator Input of dimension 100

Defining a Utility Class to Build the Generator

Label Input of dimension 1

Image generator input
Input of dimension latent_dim (e.g., 100)

• Embedding for categorical input
• Each label (total 10 classes for cifar), will 

be represented by a vector of size 50.

• Linear multiplication
• To match the dimensions for 

concatenation later in this step.

Reshape to additional channel

Create a dense layer of size  1 x 1024

Source: DigitalSreeni Youtube Channel
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Build up the Generator
def define_generator(latent_dim, n_classes = 10):
    # Image generator input
    in_lat = Input(shape=(latent_dim,))  # image generator Input of dimension 100

    # Foundation for 32x32 image
    n_nodes = 32 * 32 * 256
    gen = Dense(n_nodes)(in_lat)  # shape = 262,144
    gen = Reshape((32, 32, 256))(gen)  # Shape=32x32x256
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # merge image gen and label input
    merge = Concatenate()([gen, li])  #Shape=32x32x257 (Extra channel corresponds to the label)

    # Upsample to 64x64x128
    gen = Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same’)(merge)
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Upsample to 128x128x64
    gen = Conv2DTranspose(32, (4, 4), strides=(2, 2), padding='same')(gen)
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Upsample to 256x256x32
    gen = Conv2DTranspose(16, (4, 4), strides=(2, 2), padding='same')(gen)
    gen = BatchNormalization()(gen)
    gen = ReLU()(gen)

    # Output layer  256x256x3
    out_layer = Conv2D(3, (8, 8), activation='tanh', padding='same')(gen)

    # Define model
    model = Model([in_lat, in_label], out_layer)

    return model  # Model not compiled as it is not directly trained like the discriminator.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

• The difference is that generated Image gen is merged 
with its label input li, represented as an extra channel

• The merged image is then passed on to the next layer

• This part is usually same as unconditional GAN until the 
output layer.

• While defining model inputs we will combine input 
label and the latent input.
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Defining a Utility Class to Build the Discriminator
def define_discriminator(in_shape=(32,32,3), n_classes=10):

in_label = Input(shape=(1,)) #label input of Shape 1

li = Embedding(n_classes, 50)(in_label) #Shape 1,50

n_nodes = in_shape[0] * in_shape[1] #256x256 = 1024.

li = Dense(n_nodes)(li) #Shape = 1, 65,536

li = Reshape((in_shape[0], in_shape[1], 1))(li) #256x256x1

# image input

in_image = Input(shape=in_shape) #256x256x3

# concat label as a channel

merge = Concatenate()([in_image, li]) # 256x256x4 (4 channels, 3 for 
# image and the other for labels)

• li = Embedding for categorical input
• Each label (total 10 classes for cifar), 

will be represented by a vector of size 
50, which in turn will be learned by 
the discriminator

Label Input of shape 1

Source: DigitalSreeni Youtube Channel

The input dimension of the first layer is a is 
256x256x3, which is the same as the output
dimension of the generator's last layer.

Scale up to image dimensions with linear activation

• Concatenate label with image as a channel
• Merged image = 256x256x4 (4 channels, 3 for 

image and the other for labels)

Reshape to additional channel
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Build up the Discriminator
def define_discriminator(in_shape=(32,32,3), n_classes=10):
    # Input layer for real or generated image
    in_image = Input(shape=image_shape)

    # concat label as a channel
    merge = Concatenate()([in_image, li]) #32x32x4 (4 channels, 3 for image and the other for labels)
    # Downsample to 128x128x64
    d = Conv2D(64, (4, 4), strides=(2, 2), padding='same')(merge)
    d = LeakyReLU(alpha=0.2)(d)
    d = Dropout(0.25)(d)

    # Downsample to 64x64x128
    d = Conv2D(128, (4, 4), strides=(2, 2), padding='same')(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Dropout(0.25)(d)

    # Downsample to 32x32x256
    d = Conv2D(256, (4, 4), strides=(2, 2), padding='same')(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Dropout(0.25)(d)

    # Flatten and output a single classification value
    d = Flatten()(d)
    out_layer = Dense(1, activation='sigmoid')(d)

    # Define model
    model = Model([in_image, in_label], out_layer)
    opt = Adam(lr=0.0002, beta_1=0.5)
    model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
    return model

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

The input dimension of the first layer 
is image shape 256x256x3, and 
number of classes

• The difference is that input Image is merged with its 
label input li, represented as an extra channel

• The merged image is then passed on to the next layer

• This part is usually same as unconditional GAN until the 
output layer.

• While defining model inputs we will combine input 
label in_labelwith the input image in_image
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Build up the Discrimnator
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Building the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def define_gan(g_model, d_model):

d_model.trainable = False #Discriminator is trained separately. So set to not trainable.

## connect generator and discriminator...

# first, get noise and label inputs from generator model

gen_noise, gen_label = g_model.input #Latent vector size and label size

# get image output from the generator model

gen_output = g_model.output #32x32x3

# generator image output and corresponding input label are inputs to discriminator

gan_output = d_model([gen_output, gen_label])

# define gan model as taking noise and label and outputting a classification

model = Model([gen_noise, gen_label], gan_output)

# compile model

opt = Adam(lr=0.0002, beta_1=0.5)

model.compile(loss='binary_crossentropy', optimizer=opt)

return model

Aa pre-trained discriminator modelA pre-trained generator model
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Building the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def define_gan(g_model, d_model):

d_model.trainable = False #Discriminator is trained separately. So set to not trainable.

## connect generator and discriminator...

# First, get noise and label inputs from generator model

gen_noise, gen_label = g_model.input #Latent vector size and label size

# Get image output from the generator model

gen_output = g_model.output #32x32x3

# Generator image output and corresponding input label are inputs to discriminator

gan_output = d_model([gen_output, gen_label])

# Define gan model as taking noise and label and outputting a classification

model = Model([gen_noise, gen_label], gan_output)

# Compile model

opt = Adam(lr=0.0002, beta_1=0.5)

model.compile(loss='binary_crossentropy', optimizer=opt)

return model

Aa pre-trained discriminator modelA pre-trained generator model

Get noise and label inputs from generator model

Get image output from the generator model

Generator image output and 
corresponding input label are inputs

Define gan model as taking noise and 
label and outputting a classification

Compile model
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Building the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def define_gan(g_model, d_model):

d_model.trainable = False #Discriminator is trained separately. So set to not trainable.

## connect generator and discriminator...

# first, get noise and label inputs from generator model

gen_noise, gen_label = g_model.input #Latent vector size and label size

# get image output from the generator model

gen_output = g_model.output #32x32x3

# generator image output and corresponding input label are inputs to discriminator

gan_output = d_model([gen_output, gen_label])

# define gan model as taking noise and label and outputting a classification

model = Model([gen_noise, gen_label], gan_output)

# compile model

opt = Adam(lr=0.0002, beta_1=0.5)

model.compile(loss='binary_crossentropy', optimizer=opt)

return model

Differences are highlighted in blue color
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Generate Real Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_real_samples(dataset, n_samples):

# split into images and labels

images, labels = dataset

# choose random instances

ix = randint(0, images.shape[0], n_samples)

# select images and labels

X, labels = images[ix], labels[ix]

# generate class labels and assign to y (don't confuse this with the above labels that   

# correspond to cifar labels)

y = ones((n_samples, 1)) #Label=1 indicating they are real

return [X, labels], y
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Generate points in latent space as input for the generator

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_latent_points(latent_dim, n_samples, n_classes=10):

# generate points in the latent space

x_input = randn(latent_dim * n_samples)

# reshape into a batch of inputs for the network

z_input = x_input.reshape(n_samples, latent_dim)

# generate labels

labels = randint(0, n_classes, n_samples)

return [z_input, labels]
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Generate Fake Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_fake_samples(generator, latent_dim, n_samples):

# generate points in latent space

z_input, labels_input = generate_latent_points(latent_dim, n_samples)

# predict outputs

images = generator.predict([z_input, labels_input])

# create class labels

y = zeros((n_samples, 1)) #Label=0 indicating they are fake

return [images, labels_input], y
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Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, 
n_batch=128, subset_size=None):

if subset_size is not None:

dataset_subset = (dataset[0][:subset_size], dataset[1][:subset_size])

else:

dataset_subset = dataset

bat_per_epo = int(dataset_subset[0].shape[0] / n_batch)

half_batch = int(n_batch / 2)

 # The discriminator model is updated for a half batch of real samples

 # and a half batch of fake samples, combined a single batch.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, n_batch=128, 
subset_size=None):

---

for i in range(n_epochs):

for j in range(batch_per_epoch):

[X_real, labels_real], y_real = generate_real_samples(dataset_subset, half_batch)

d_loss_real, _ = d_model.train_on_batch([X_real, labels_real], y_real)

[X_fake, labels], y_fake = generate_fake_samples(g_model, latent_dim, half_batch)

d_loss_fake, _ = d_model.train_on_batch([X_fake, labels], y_fake)

[z_input, labels_input] = generate_latent_points(latent_dim, n_batch)

y_gan = np.ones((n_batch, 1))

g_loss = gan_model.train_on_batch([z_input, labels_input], y_gan)

print('Epoch>%d, Batch%d/%d, d1=%.3f, d2=%.3f g=%.3f' %

(i+1, j+1, bat_per_epo, d_loss_real, d_loss_fake, g_loss))

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

2.1.Train discriminator on real samples

2.2.Train discriminator on fake samples

3. Train generator

Print losses in this batch

1.Generate a set of input real and fake and images

Training GAN: For each poch, batch perform following

• Train the discriminator on real and fake images, separately (half batch each)

• Research showed that separate training is more effective.
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Training the Generative Adversarial Network
# size of the latent space

latent_dim = 100

# create the discriminator

d_model = define_discriminator()

# create the generator

g_model = define_generator(latent_dim)

# create the gan model

gan_model = define_gan(g_model, d_model)

# load image data

dataset = load_real_samples()

# train the GAN mode model

train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=5, n_batch=512)

#train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=2, n_batch=512, 
subset_size=5120)

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Create GAN

Create the generator model

Create the discriminator model

Load Image Data

Train the GAN Model


