
Dr. Ahmar Rashid, FCSE, GIKI

Deep Learning
Generative Adversarial Networks (GANs)

Dr. Ahmar Rashid, FCSE, GIKI

Contents

1. What are GANs?

2. How do GANs Work?

3. Components of GANs

4. Training GANs

5. GAN Applications

6. Challenges and Future Directions

7. Conclusion

Dr. Ahmar Rashid, FCSE, GIKI

What are GANs

 Definition

 Generative Adversarial Networks (GANs) are a class of machine
learning models designed to generate new data samples that
resemble a given dataset.

 Introduced by Ian Goodfellow and his colleagues in 2014.

 GANs are part of the broader field of generative modeling.

Dr. Ahmar Rashid, FCSE, GIKI

Generated bedrooms. Source: “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks” https://arxiv.org/abs/1511.06434v2

Dr. Ahmar Rashid, FCSE, GIKI

Original CIFAR-10 vs. Generated CIFAR-10 samples
Source: “Improved Techniques for Training GANs” https://arxiv.org/abs/1606.03498

Dr. Ahmar Rashid, FCSE, GIKI

How do GANs Work?

• GAN Architecture:

• Generator (G): G(z) where z is random noise.

• Discriminator(D): D(x) where x is real or generated data.

• Objective:

• Minimize �� and �� where �� is the discriminator loss and
�� is the generator loss.

Dr. Ahmar Rashid, FCSE, GIKI

Generative Adversarial Network (GAN)

Source: Zhifei Zhang , University of Tennessee, Knoxville

Dr. Ahmar Rashid, FCSE, GIKI

Generative Adversarial Network (GAN)

Source: DigitalSreeni Youtube Channel

0.1

0.3

-0.5

-0.7

…

…

…

0.9

Random Noise
(Latent Vector)

Generator

The training objective
of the generator is
maximize the
probability that
discriminator make a
mistake The training objective

of the Discriminator is
to maximize the
probability of
discriminating
between real vs fakes
images correctly

Discriminator

Real Images

Fake Images

Discriminator
Loss

Generator
Loss

Real

Fake

50/50

Dr. Ahmar Rashid, FCSE, GIKI

Generative Adversarial Network (GAN)

Binary Classifier:
Conv, Leaky ReLU,
FC, Sigmoid

New components:
Transposed convolution,
Batch Normalization

https://github.com/PramodShenoy/GANerations

Dr. Ahmar Rashid, FCSE, GIKI

Adversarial Networks

Generative
Model

Real world
Discriminativ

e
Model

real or fake?

Dr. Ahmar Rashid, FCSE, GIKI

Components of a GANs

 Generator:

 Input: Random noise (z).

 Output: Generates synthetic data (G(z)).

 Discriminator:

 Input: Real or generated data (x).

 Output: Classifies input as real or fake (D(x)).

Dr. Ahmar Rashid, FCSE, GIKI

Generating fake figures

Source of images: https://zhuanlan.zhihu.com/p/24767059
From Dr. HY Lee’s notes.

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

You can use the following to start a project (but this is in Chinese):

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figuresb

100 rounds

This is fast, I think you can use your CPU

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figures

1000 rounds

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figures

2000 rounds

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figures

5000 rounds

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figures

10,000 rounds

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figures

20,000 rounds

Dr. Ahmar Rashid, FCSE, GIKI

GAN – generating 2nd element figures

50,000 rounds

Dr. Ahmar Rashid, FCSE, GIKI

Next few images from Goodfellow lecture

Traditional mean-squared
Error, averaged, blurry

Dr. Ahmar Rashid, FCSE, GIKI

Last 2 are by deep learning approaches.

Dr. Ahmar Rashid, FCSE, GIKI

Dr. Ahmar Rashid, FCSE, GIKI

Dr. Ahmar Rashid, FCSE, GIKI

Similar to word embedding (DCGAN paper)

Dr. Ahmar Rashid, FCSE, GIKI

Training GANs
 Iterative Process:

 Generator generates samples G(z)).

 Discriminator evaluates and provides feedback.

 Adjustments made to both generator and discriminator.

 Repeat until convergence.

 Adversarial Loss Function:

 �� =
�

�
��~�����

 −�� � � +
�

�
��~�� −�� � − � � �

 �� = −��=
�

�
��~�����

 �� � � +
�

�
��~�� �� � − � � �

 �� =
�

�
��~�� �� � − � � � =

�

�
��~�� −�� � � �

 ����, ����(��) =
�

�
��~�����

 �� � � +
�

�
��~�� �� � − � � �

Dr. Ahmar Rashid, FCSE, GIKI

Logistic
Regression

Cost function

Dr. Ahmar Rashid, FCSE, GIKI

Logistic regression cost function

If y = 1

10

-logx

0 1But predict P

Dr. Ahmar Rashid, FCSE, GIKI

Logistic regression cost function

If y = 0

10

-log(1-z)

z
0 1

1

1

0 0

0 0
1

Dr. Ahmar Rashid, FCSE, GIKI

Logistic regression consolidated cost function

If y = 1

10 10

Cost(hθ(x) , y) = -y log(hθ(x)) – ((1-y) log(1- hθ(x))

If y = 0

Dr. Ahmar Rashid, FCSE, GIKI

GAN consolidated cost function

If �~�����

10 10

�� = −
�

�
��~�����

 �� � � −
�

�
��~��

�� � − � � �

�� =
�

�
��~�� −�� � � �

If �~��

� �
Discriminator

� �(�)
Generator

� = 1 , ŷ = � � = 1
⇒ �� = −�� � � 0��

��
� = 0 , ŷ = � � � = 1

⇒ �� = −�� �(� �) 0
If �~��
� = 0 , ŷ = � � � = 1

 ⇒ ��= − �� � − � � � ∞

Dr. Ahmar Rashid, FCSE, GIKI

GAN Applications

 Image Generation:

 Visual: Comparison between real and generated images.

 Data Augmentation:

 Visual: Original vs. augmented dataset.

 Image-to-Image Translation:

 Visual: Satellite image to map conversion.

 Super Resolution:

 Visual: Low resolution vs. high resolution image.

Dr. Ahmar Rashid, FCSE, GIKI

GAN Challenges and Future Directions

 Training Stability:

 Visual: Illustration of mode collapse.

 Evaluation Metrics:

 Visual: Difficulty in evaluating generated samples.

 Ethical Considerations:

 Visual: Potential biases in generated data.

 Future Directions:

 Visual: Concepts for improved GAN architectures.

Dr. Ahmar Rashid, FCSE, GIKI

Training Procedure

 Train both models simultaneously via stochastic gradient
descent using minibatches consisting of

 some generated samples

 some real-world samples

 Training of D is straightforward

 Error for G comes via back propagation through D

 Two ways to think about training

 (1) freeze D weights and propagate �� through D to determine ���/��

 (2) Compute ���/�� and then ��� ��⁄ = −���/��

 D can be trained without altering G, and vice versa

 May want multiple training epochs of just D so it can stay ahead

 May want multiple training epochs of just G because it has a
harder task

Discriminative
Model

real or fake?

Generative
Model

noise (�)

Real world

Dr. Ahmar Rashid, FCSE, GIKI

Training Procedure
 for each training iteration do

 for k steps do

Sample m noise samples {z1, …, zm} and transform with Generator

Sample m real samples {x1, …, xm} from real data

Update the Discriminator by ascending the gradient.

▽ ��

�

�
 ∑ �� � �(�) + �� � − � � �(�)�

���

 end for

 Sample m noise samples {z1, …, zm} and transform with Generator

 Update the Generator by descending the gradient:

▽ ��

�

�
 ∑ �� � �(�) + �� � − � � �(�)�

���

▽ ��

�

�
 ∑ �� � − � � �(�)�

��� ▽ ��

�

�
 ∑ −�� � � �(�)�

���

Understand the Math and Theory of GANs in ~ 10 mins
https://www.youtube.com/watch?v=J1aG12dLo4I

Dr. Ahmar Rashid, FCSE, GIKI

The Discriminator Has a Straightforward Task

 D has learned when

 � � = �� ���� � =

��(�|����)

��(�|����)���(�|�����������)

discriminator

real

model

G
o
o
d
fe

ll
o
w

(2
0
1
7
)

The Math Behind Generative Adversarial Networks Clearly Explained!
https://www.youtube.com/watch?v=Gib_kiXgnvA

Dr. Ahmar Rashid, FCSE, GIKI

Coding GANs

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Dr. Ahmar Rashid, FCSE, GIKI

Importing Libraries

import os

import numpy as np

import matplotlib.pyplot as plt

from tqdm import tqdm

from numpy import zeros

from numpy import ones

from numpy.random import randn

from numpy.random import randint

from keras.datasets.cifar10 import load_data

from keras.optimizers import Adam

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Reshape

from keras.layers import Flatten

from keras.layers import Conv2D

from keras.layers import Conv2DTranspose, BatchNormalization

from keras.layers import LeakyReLU, ReLU

from keras.layers import Dropout

from keras.layers import Embedding

from keras.layers import Concatenate

import matplotlib.pyplot as plt

https://www.datacamp.com/tutorial/generative-adversarial-networks

Dr. Ahmar Rashid, FCSE, GIKI

Copy/Split the Dataset into Train & Test Folders
from google.colab import drive

 drive.mount('/content/drive’)

from sklearn.model_selection import train_test_split

import os

import shutil

dataset_folder = '/content/drive/MyDrive/tea_sickness_subset'

Get the list of image filenames in the dataset folder
image_files = [os.path.join(dataset_folder, file)
for file in os.listdir(dataset_folder)
if file.endswith('.jpg') or file.endswith('.png')]

#Define the ratio for splitting the dataset into training and

testing sets

test_size = 0.2

Split the dataset into training and testing sets

train_files, test_files = train_test_split(image_files,

test_size=test_size, random_state=42)

Print the number of images in each set

print("Number of images in training set:", len(train_files))

print("Number of images in testing set:", len(test_files))

https://www.datacamp.com/tutorial/generative-adversarial-networks

Optionally, you can move the files to separate training and

testing folders

train_folder = '/content/train_dataset'

test_folder = '/content/test_dataset’

Create the training and testing folders if they don't exist

if not os.path.exists(train_folder):

 os.makedirs(train_folder)

if not os.path.exists(test_folder):

 os.makedirs(test_folder)

Move training images to the train folder

for file in train_files:

 filename = os.path.basename(file)

 dest_path = os.path.join(train_folder, filename)

 shutil.copyfile(file, dest_path)

Move testing images to the test folder

for file in test_files:

 filename = os.path.basename(file)

 dest_path = os.path.join(test_folder, filename)

 shutil.copyfile(file, dest_path)

print("Dataset split and saved into training and testing

folders.")

Dr. Ahmar Rashid, FCSE, GIKI

Load the Split Dataset into x_train & y_train np Arrays
from PIL import Image

import os

import numpy as np

Define the paths to the training and testing folders

train_folder = '/content/train_dataset'

test_folder = '/content/test_dataset'

Initialize lists to store the image data

x_train = []

x_test = []

Resize function

def resize_image(img, size=(512, 512)):

 return img.resize(size)

https://www.datacamp.com/tutorial/generative-adversarial-networks

Read images from the training folder

for filename in os.listdir(train_folder):

 img_path = os.path.join(train_folder, filename)

 img = Image.open(img_path)

 img_resized = resize_image(img) # Resize the image to 256x256

 img_data = np.array(img_resized) # Convert image to numpy array

 x_train.append(img_data)

Read images from the testing folder

for filename in os.listdir(test_folder):

 img_path = os.path.join(test_folder, filename)

 img = Image.open(img_path)

 img_resized = resize_image(img) # Resize the image to 256x256

 img_data = np.array(img_resized) # Convert image to numpy array

 x_test.append(img_data)

Convert lists to numpy arrays

x_train = np.array(x_train)

x_test = np.array(x_test)

Print the shapes of the arrays

print("Shape of x_train:", x_train.shape)

print("Shape of x_test:", x_test.shape)

Dr. Ahmar Rashid, FCSE, GIKI

Convert Data into Float and Normalize
x_train = np.array(x_train)

x_test = np.array(x_test)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train,x_test=x_train/255.0,x_test/255.0

print(x_train.shape,x_test.shape)

img_width = x_train.shape[1]

img_height = x_train.shape[2]

num_channels = 3

x_train = x_train.reshape(x_train.shape[0], img_height, img_width, num_channels)

x_test = x_test.reshape(x_test.shape[0], img_height, img_width, num_channels)

Print the shapes of the arrays

print("Shape of x_train:", x_train.shape)

print("Shape of x_test:", x_test.shape)

input_shape = (img_height, img_width, num_channels)

plt.figure(1)

plt.subplot(221)

plt.imshow(x_train[300][:,:,0])

plt.subplot(222)

plt.imshow(x_test[10][:,:,0])

https://www.datacamp.com/tutorial/generative-adversarial-networks

Dr. Ahmar Rashid, FCSE, GIKI

Us the Adam Optimizer

You will use the Adam optimizer

def get_optimizer():

return Adam(lr=0.0002, beta_1=0.5)

https://www.datacamp.com/tutorial/generative-adversarial-networks

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Generator
def define_generator(latent_dim):
 # Image generator input
 in_lat = Input(shape=(latent_dim,)) # Input of dimension, say 128

 # Foundation for 32x32 image
 n_nodes = 32 * 32 * 256
 gen = Dense(n_nodes)(in_lat) # shape = 262,144
 gen = Reshape((32, 32, 256))(gen) # Shape=32x32x256
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Upsample to 64x64x128
 gen = Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same')(gen)
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Upsample to 128x128x64
 gen = Conv2DTranspose(32, (4, 4), strides=(2, 2), padding='same')(gen)
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Upsample to 256x256x32
 gen = Conv2DTranspose(16, (4, 4), strides=(2, 2), padding='same')(gen)
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Output layer 256x256x3
 out_layer = Conv2D(3, (8, 8), activation='tanh', padding='same')(gen)

 # Define model
 model = Model(in_lat, out_layer)
 return model # Model not compiled as it is not directly trained like the discriminator.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Create a functional model for the generator, with in_lat
as model input and last layer output as model output

The input the first layer is a variable called in_lat, of
dimension = latent_dim (e.g., 128)

The final out_layer generates an
image of size = 256x256x3

• The dense layer is followed by (03)
unsampling blocks featuring 2D
transpose convolution layers.

• Each Conv2DTranspose layer is
followed by a BacthNormalizaton and
ReLU activation function
•Image is reshaped to 64x64x128,
128x128x64 and 256x256x32 sizes,
respectively by these blocks

• This generator network starts with (01) block
featuring dense layer, followed by Reshape(32, 32,
256), BacthNormalizaton and ReLU activation function

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Generator

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Discriminator
def define_discriminator(image_shape = (256,256,3)):
 # Input layer for real or generated image
 in_image = Input(shape=image_shape)

 # Downsample to 128x128x64
 d = Conv2D(64, (4, 4), strides=(2, 2), padding='same')(in_image)
 d = LeakyReLU(alpha=0.2)(d)
 d = Dropout(0.25)(d)

 # Downsample to 64x64x128
 d = Conv2D(128, (4, 4), strides=(2, 2), padding='same')(d)
 d = LeakyReLU(alpha=0.2)(d)
 d = Dropout(0.25)(d)

 # Downsample to 32x32x256
 d = Conv2D(256, (4, 4), strides=(2, 2), padding='same')(d)
 d = LeakyReLU(alpha=0.2)(d)
 d = Dropout(0.25)(d)

 # Flatten and output a single classification value
 d = Flatten()(d)
 out_layer = Dense(1, activation='sigmoid')(d)

 # Define model
 model = Model(in_image, out_layer)
 opt = Adam(lr=0.0002, beta_1=0.5)
 model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
 return model

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

The input dimension of the first layer is a is
256x256x3, which is the same as the output
dimension of the generator's last layer.

• The descriminator network features
three (03) downsampling blocks featuring
2D convolution layers.

• Each Conv2D layer is followed by
LeakyReLU activation function

• Image is reshaped to 128x128x64,
64x64x128, and 32x32x32 sizes,
respectively by these blocks

• This discreminator network ends with a dense
layer, which is given the flattened output of
lass convolution block as its input

• The last dense layer has a sigmoid activation
function.

• Create a functional model for the descriminator,
with in_image as model input and last layer
output as model output

• The descriminator is compiled with binary cross-
entropy loss and the optimizer passed as an
argument.

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Discrimnator

Dr. Ahmar Rashid, FCSE, GIKI

Building the Generative Adversarial Network
def define_gan(g_model, d_model):
 d_model.trainable = False #Discriminator is trained separately.
 # So set to not trainable.
 # connect generator and discriminator...
 # Get noise and label inputs from generator model
 gen_noise = g_model.input

 # Get image output from the generator model
 gen_output = g_model.output #256x256x3

 # generator image output is inputs to discriminator
 gan_output = d_model(gen_output)

 # Define a gan model as taking in noise, and outputting a classification
 model = Model(gen_noise, gan_output)

 # Compile model
 opt = Adam(lr=0.0002, beta_1=0.5)
 model.compile(loss='binary_crossentropy', optimizer=opt)
 return model

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Aa pre-trained
discriminator model

A pre-trained
generator model

Get noise and label inputs from
generator model

Get image output
(256x256x3)from the generator

model

Define a gan model as taking in noise,
and outputting a classification

GAN is compiled with binary cross-entropy loss
and the optimizer passed as an argument.

generator image output is inputs
to discriminator

Dr. Ahmar Rashid, FCSE, GIKI

Generate Real Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_real_samples(dataset, n_samples):

split into images and labels

images, labels = dataset

choose random instances

ix = randint(0, images.shape[0], n_samples)

select images and labels

X, labels = images[ix], labels[ix]

generate class labels and assign to y (don't confuse this with the above labels that

correspond to cifar labels)

y = ones((n_samples, 1)) #Label=1 indicating they are real

return [X, labels], y

Dr. Ahmar Rashid, FCSE, GIKI

Generate points in latent space as input for the generator

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_latent_points(latent_dim, n_samples, n_classes=10):

generate points in the latent space

x_input = randn(latent_dim * n_samples)

reshape into a batch of inputs for the network

z_input = x_input.reshape(n_samples, latent_dim)

generate labels

labels = randint(0, n_classes, n_samples)

return [z_input, labels]

Dr. Ahmar Rashid, FCSE, GIKI

Generate Fake Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_fake_samples(generator, latent_dim, n_samples):

generate points in latent space

z_input, labels_input = generate_latent_points(latent_dim, n_samples)

predict outputs

images = generator.predict([z_input, labels_input])

create class labels

y = zeros((n_samples, 1)) #Label=0 indicating they are fake

return [images, labels_input], y

Dr. Ahmar Rashid, FCSE, GIKI

Training Procedure
 for each training iteration do

 for k steps do

Sample m real samples {x1, …, xm} from real data

Sample m noise samples {z1, …, zm} and transform with Generator

Update the Discriminator by ascending the gradient.

▽ ��

�

�
 ∑ �� � �(�) + �� � − � � �(�)�

���

 end for

 Sample m noise samples {z1, …, zm} and transform with Generator

 Update the Generator by descending the gradient:

▽ ��

�

�
 ∑ �� � �(�) + �� � − � � �(�)�

���

▽ ��

�

�
 ∑ �� � − � � �(�)�

��� ▽ ��

�

�
 ∑ −�� � � �(�)�

���

Understand the Math and Theory of GANs in ~ 10 mins
https://www.youtube.com/watch?v=J1aG12dLo4I

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Load dataset

Split the training data
into batches

Builds the GAN network using the
define_discriminator()
define_generator, and
define_gan functions.

Training GAN: For Each epoch, batch perform following

1. Train discriminator on real samples

2. Train discriminator on fake samples

3. Train the generator network on the input noise

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
size of the latent space

latent_dim = 128

create the discriminator

d_model = define_discriminator()

create the generator

g_model = define_generator(latent_dim)

create the gan model

gan_model = define_gan(g_model, d_model)

load image data

dataset = load_real_samples()

train the GAN mode model

train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=10, n_batch=32)

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Create GAN

Create the generator model

Create the discriminator model

Load Image Data

Train the GAN Model

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100,
n_batch=128, subset_size=None):

if subset_size is not None:

dataset_subset=(dataset[0][:subset_size], dataset[1][:subset_size])

else:

dataset_subset = dataset

bat_per_epo = int(dataset_subset[0].shape[0] / n_batch)

half_batch = int(n_batch / 2)

 # The discriminator model is updated for a half batch of real samples

 # and a half batch of fake samples, combined a single batch.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, n_batch=128,
subset_size=None):

for i in range(n_epochs):
 for j in range(batch_per_epoch):
 # Train discriminator on real samples
 X_real, y_real = generate_real_samples(dataset_subset, half_batch)
 d_loss_real, _ = d_model.train_on_batch(X_real, y_real)

 # Train discriminator on fake samples
 X_fake,y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
 d_loss_fake, _ = d_model.train_on_batch(X_fake, y_fake)

 # Train generator
 z_input = generate_latent_points(latent_dim, n_batch)
 y_gan = np.ones((n_batch, 1))
 g_loss = gan_model.train_on_batch(z_input, y_gan)

 # Print losses on this batch
 print('Epoch#%d,Batch#%d/%d,d_loss_real=%.3f,d_loss_fake=%.3f,g_loss = %.3f'%
 (i+1, j+1, batch_per_epoch, d_loss_real, d_loss_fake, g_loss))

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

1. Train discriminator on real samples

2. Train discriminator on fake samples

3. Train the generator network on

z_input , which is the input noise

Print losses in this batch

• Train the discriminator on real and fake images, separately (half batch each)

• Research showed that separate training is more effective.

Dr. Ahmar Rashid, FCSE, GIKI

Load the trained model and generate a few images

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

google_drive_path = '/content/drive/My Drive/Colab Notebooks/DeepFake/'
model = load_model(google_drive_path + 'GAN_Tea_Disease.h5')
generate multiple images
latent_points = generate_latent_points(128, 128)
specify labels - generate 10 sets of labels each gping from 0 to 9
generate images
X = model.predict([latent_points])
scale from [-1,1] to [0,1]
X = (X + 1) / 2.0
X = (X*255).astype(np.uint8)
plot the result (10 sets of images, all images in a column should be of same
class in the plot)
Plot generated images
def show_plot(examples, n):
 for i in range(n * n):
 plt.subplot(n, n, 1 + i)
 plt.axis('off')
 plt.imshow(examples[i, :, :, :])
 plt.show()
show_plot(X, 10)

Dr. Ahmar Rashid, FCSE, GIKI

Conditional GANs

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Dr. Ahmar Rashid, FCSE, GIKI

Generative Adversarial Network (GAN)

Source: DigitalSreeni Youtube Channel

0.1

0.3

-0.5

-0.7

…

…

…

0.9

Random Noise
(Latent Vector)

Generator
Discriminator

Real Images

Fake Images

Discriminator
Loss

Generator
Loss

Real

Fake

50/50

1

2

3

4

5

Conditional data(y):
Can be class labels, or
Data from some other
modalities

Dr. Ahmar Rashid, FCSE, GIKI

Coding Conditional GANs

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Dr. Ahmar Rashid, FCSE, GIKI

def define_generator(latent_dim, n_classes=10):

in_label = Input(shape=(1,)) #Input of dimension 1

li = Embedding(n_classes, 50)(in_label) #Shape 1 x 50

n_nodes = 32 * 32 #Linear multiplication, to match the dimensions for

concatenation later in this step.

li = Dense(n_nodes)(li) # Dense layer of size 1 x 64

li = Reshape((32, 32, 1))(li) # (32x32x1) reshape to additional channel

in_lat = Input(shape=(latent_dim,)) # image generator Input of dimension 100

Defining a Utility Class to Build the Generator

Label Input of dimension 1

Image generator input
Input of dimension latent_dim (e.g., 100)

• Embedding for categorical input
• Each label (total 10 classes for cifar), will

be represented by a vector of size 50.

• Linear multiplication
• To match the dimensions for

concatenation later in this step.

Reshape to additional channel

Create a dense layer of size 1 x 1024

Source: DigitalSreeni Youtube Channel

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Generator
def define_generator(latent_dim, n_classes = 10):
 # Image generator input
 in_lat = Input(shape=(latent_dim,)) # image generator Input of dimension 100

 # Foundation for 32x32 image
 n_nodes = 32 * 32 * 256
 gen = Dense(n_nodes)(in_lat) # shape = 262,144
 gen = Reshape((32, 32, 256))(gen) # Shape=32x32x256
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # merge image gen and label input
 merge = Concatenate()([gen, li]) #Shape=32x32x257 (Extra channel corresponds to the label)

 # Upsample to 64x64x128
 gen = Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same’)(merge)
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Upsample to 128x128x64
 gen = Conv2DTranspose(32, (4, 4), strides=(2, 2), padding='same')(gen)
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Upsample to 256x256x32
 gen = Conv2DTranspose(16, (4, 4), strides=(2, 2), padding='same')(gen)
 gen = BatchNormalization()(gen)
 gen = ReLU()(gen)

 # Output layer 256x256x3
 out_layer = Conv2D(3, (8, 8), activation='tanh', padding='same')(gen)

 # Define model
 model = Model([in_lat, in_label], out_layer)

 return model # Model not compiled as it is not directly trained like the discriminator.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

• The difference is that generated Image gen is merged
with its label input li, represented as an extra channel

• The merged image is then passed on to the next layer

• This part is usually same as unconditional GAN until the
output layer.

• While defining model inputs we will combine input
label and the latent input.

Dr. Ahmar Rashid, FCSE, GIKI

Dr. Ahmar Rashid, FCSE, GIKI

Defining a Utility Class to Build the Discriminator
def define_discriminator(in_shape=(32,32,3), n_classes=10):

in_label = Input(shape=(1,)) #label input of Shape 1

li = Embedding(n_classes, 50)(in_label) #Shape 1,50

n_nodes = in_shape[0] * in_shape[1] #256x256 = 1024.

li = Dense(n_nodes)(li) #Shape = 1, 65,536

li = Reshape((in_shape[0], in_shape[1], 1))(li) #256x256x1

image input

in_image = Input(shape=in_shape) #256x256x3

concat label as a channel

merge = Concatenate()([in_image, li]) # 256x256x4 (4 channels, 3 for
image and the other for labels)

• li = Embedding for categorical input
• Each label (total 10 classes for cifar),

will be represented by a vector of size
50, which in turn will be learned by
the discriminator

Label Input of shape 1

Source: DigitalSreeni Youtube Channel

The input dimension of the first layer is a is
256x256x3, which is the same as the output
dimension of the generator's last layer.

Scale up to image dimensions with linear activation

• Concatenate label with image as a channel
• Merged image = 256x256x4 (4 channels, 3 for

image and the other for labels)

Reshape to additional channel

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Discriminator
def define_discriminator(in_shape=(32,32,3), n_classes=10):
 # Input layer for real or generated image
 in_image = Input(shape=image_shape)

 # concat label as a channel
 merge = Concatenate()([in_image, li]) #32x32x4 (4 channels, 3 for image and the other for labels)
 # Downsample to 128x128x64
 d = Conv2D(64, (4, 4), strides=(2, 2), padding='same')(merge)
 d = LeakyReLU(alpha=0.2)(d)
 d = Dropout(0.25)(d)

 # Downsample to 64x64x128
 d = Conv2D(128, (4, 4), strides=(2, 2), padding='same')(d)
 d = LeakyReLU(alpha=0.2)(d)
 d = Dropout(0.25)(d)

 # Downsample to 32x32x256
 d = Conv2D(256, (4, 4), strides=(2, 2), padding='same')(d)
 d = LeakyReLU(alpha=0.2)(d)
 d = Dropout(0.25)(d)

 # Flatten and output a single classification value
 d = Flatten()(d)
 out_layer = Dense(1, activation='sigmoid')(d)

 # Define model
 model = Model([in_image, in_label], out_layer)
 opt = Adam(lr=0.0002, beta_1=0.5)
 model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
 return model

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

The input dimension of the first layer
is image shape 256x256x3, and
number of classes

• The difference is that input Image is merged with its
label input li, represented as an extra channel

• The merged image is then passed on to the next layer

• This part is usually same as unconditional GAN until the
output layer.

• While defining model inputs we will combine input
label in_labelwith the input image in_image

Dr. Ahmar Rashid, FCSE, GIKI

Build up the Discrimnator

Dr. Ahmar Rashid, FCSE, GIKI

Building the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def define_gan(g_model, d_model):

d_model.trainable = False #Discriminator is trained separately. So set to not trainable.

connect generator and discriminator...

first, get noise and label inputs from generator model

gen_noise, gen_label = g_model.input #Latent vector size and label size

get image output from the generator model

gen_output = g_model.output #32x32x3

generator image output and corresponding input label are inputs to discriminator

gan_output = d_model([gen_output, gen_label])

define gan model as taking noise and label and outputting a classification

model = Model([gen_noise, gen_label], gan_output)

compile model

opt = Adam(lr=0.0002, beta_1=0.5)

model.compile(loss='binary_crossentropy', optimizer=opt)

return model

Aa pre-trained discriminator modelA pre-trained generator model

Dr. Ahmar Rashid, FCSE, GIKI

Building the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def define_gan(g_model, d_model):

d_model.trainable = False #Discriminator is trained separately. So set to not trainable.

connect generator and discriminator...

First, get noise and label inputs from generator model

gen_noise, gen_label = g_model.input #Latent vector size and label size

Get image output from the generator model

gen_output = g_model.output #32x32x3

Generator image output and corresponding input label are inputs to discriminator

gan_output = d_model([gen_output, gen_label])

Define gan model as taking noise and label and outputting a classification

model = Model([gen_noise, gen_label], gan_output)

Compile model

opt = Adam(lr=0.0002, beta_1=0.5)

model.compile(loss='binary_crossentropy', optimizer=opt)

return model

Aa pre-trained discriminator modelA pre-trained generator model

Get noise and label inputs from generator model

Get image output from the generator model

Generator image output and
corresponding input label are inputs

Define gan model as taking noise and
label and outputting a classification

Compile model

Dr. Ahmar Rashid, FCSE, GIKI

Building the Generative Adversarial Network

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def define_gan(g_model, d_model):

d_model.trainable = False #Discriminator is trained separately. So set to not trainable.

connect generator and discriminator...

first, get noise and label inputs from generator model

gen_noise, gen_label = g_model.input #Latent vector size and label size

get image output from the generator model

gen_output = g_model.output #32x32x3

generator image output and corresponding input label are inputs to discriminator

gan_output = d_model([gen_output, gen_label])

define gan model as taking noise and label and outputting a classification

model = Model([gen_noise, gen_label], gan_output)

compile model

opt = Adam(lr=0.0002, beta_1=0.5)

model.compile(loss='binary_crossentropy', optimizer=opt)

return model

Differences are highlighted in blue color

Dr. Ahmar Rashid, FCSE, GIKI

Generate Real Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_real_samples(dataset, n_samples):

split into images and labels

images, labels = dataset

choose random instances

ix = randint(0, images.shape[0], n_samples)

select images and labels

X, labels = images[ix], labels[ix]

generate class labels and assign to y (don't confuse this with the above labels that

correspond to cifar labels)

y = ones((n_samples, 1)) #Label=1 indicating they are real

return [X, labels], y

Dr. Ahmar Rashid, FCSE, GIKI

Generate points in latent space as input for the generator

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_latent_points(latent_dim, n_samples, n_classes=10):

generate points in the latent space

x_input = randn(latent_dim * n_samples)

reshape into a batch of inputs for the network

z_input = x_input.reshape(n_samples, latent_dim)

generate labels

labels = randint(0, n_classes, n_samples)

return [z_input, labels]

Dr. Ahmar Rashid, FCSE, GIKI

Generate Fake Samples

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

def generate_fake_samples(generator, latent_dim, n_samples):

generate points in latent space

z_input, labels_input = generate_latent_points(latent_dim, n_samples)

predict outputs

images = generator.predict([z_input, labels_input])

create class labels

y = zeros((n_samples, 1)) #Label=0 indicating they are fake

return [images, labels_input], y

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100,
n_batch=128, subset_size=None):

if subset_size is not None:

dataset_subset = (dataset[0][:subset_size], dataset[1][:subset_size])

else:

dataset_subset = dataset

bat_per_epo = int(dataset_subset[0].shape[0] / n_batch)

half_batch = int(n_batch / 2)

 # The discriminator model is updated for a half batch of real samples

 # and a half batch of fake samples, combined a single batch.

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100, n_batch=128,
subset_size=None):

for i in range(n_epochs):

for j in range(batch_per_epoch):

[X_real, labels_real], y_real = generate_real_samples(dataset_subset, half_batch)

d_loss_real, _ = d_model.train_on_batch([X_real, labels_real], y_real)

[X_fake, labels], y_fake = generate_fake_samples(g_model, latent_dim, half_batch)

d_loss_fake, _ = d_model.train_on_batch([X_fake, labels], y_fake)

[z_input, labels_input] = generate_latent_points(latent_dim, n_batch)

y_gan = np.ones((n_batch, 1))

g_loss = gan_model.train_on_batch([z_input, labels_input], y_gan)

print('Epoch>%d, Batch%d/%d, d1=%.3f, d2=%.3f g=%.3f' %

(i+1, j+1, bat_per_epo, d_loss_real, d_loss_fake, g_loss))

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

2.1.Train discriminator on real samples

2.2.Train discriminator on fake samples

3. Train generator

Print losses in this batch

1.Generate a set of input real and fake and images

Training GAN: For each poch, batch perform following

• Train the discriminator on real and fake images, separately (half batch each)

• Research showed that separate training is more effective.

Dr. Ahmar Rashid, FCSE, GIKI

Training the Generative Adversarial Network
size of the latent space

latent_dim = 100

create the discriminator

d_model = define_discriminator()

create the generator

g_model = define_generator(latent_dim)

create the gan model

gan_model = define_gan(g_model, d_model)

load image data

dataset = load_real_samples()

train the GAN mode model

train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=5, n_batch=512)

#train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=2, n_batch=512,
subset_size=5120)

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

Create GAN

Create the generator model

Create the discriminator model

Load Image Data

Train the GAN Model

